Этапы развития биотехнологии как науки

Этапы развития биотехнологии как науки

Главная > Реферат >Биология

Федеральное агентство по здравоохранению и социальному развитию РФ

ГОУ ВПО «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ РОСЗДРАВА»

Кафедра Фармацевтической технологии

Этапы развития биотехнологии

студентка группы 61

Иванова Жанна Владимировна

Биотехнология — одна из важнейших современных научных дисциплин, необходимых фармацевту, работающему как в лабораториях и цехах предприятий, выпускающих лекарственные средства, так и в аптеках и контрольных учреждениях. В каждом случае помимо знания общих основ этой науки (и сферы производства) обязательно также глубокое знакомство с теми ее разделами, которые будут наиболее близки профилю работы специалиста. Знакомство с биотехнологией необходимо всем выпускникам медицинских вузов независимо от их специализации: биотехнологические методы все более интенсивно проникают в практику диагностики, профилактики и лечения различных заболеваний, современные же концепции биотехнологии способствуют формированию мировоззрения человека, адекватного стремительному течению научно-технического прогресса в современном мире.

В общем смысле технология, как правило, связана с производством, целью которого является удовлетворение потребностей человеческого общества. Иногда высказывается мнение, что биотехнология — это осуществление природного процесса в искусственных, созданных человеком условиях. Однако в последнее десятилетие на основе биотехнологических методов в биореакторах (техногенных нишах) воспроизводятся не только природные, но и не протекающие в природе процессы с использованием ферментов (биокатализаторов — бесклеточных ферментных комплексов), одноклеточных и многоклеточных организмов.

1. Определение биотехнологии

Общепризнано, что содержанием биотехнологии является использование достижений фундаментальных биологических наук в практических целях. Четверть века назад Европейская федерация по биотехнологии выдвинула следующий тезис: «Биотехнология — применение биологических систем и процессов в промышленности и сфере услуг», не подчеркнув научное содержание биотехнологии; кроме того, слишком широким представляется понятие «сфера услуг». На одном из конгрессов 10 лет спустя было дано более подробное определение: «Биотехнология — это наука об основах реализации процессов получения с помощью биокатализаторов разных продуктов и об использовании таких процессов при защите окружающей среды», все же неоправданно сужающее ее возможности.

В некоторых учебных пособиях биотехнология трактуется как «направление научно-технического прогресса, использующее биологические процессы и агенты для целенаправленного воздействия на природу, а также в интересах промышленного получения полезных для человека продуктов, в частности лекарственных средств».

Из этого и предыдущих определений следует, что биотехнология — и наука, и сфера производства. Она включает разделы энзимологии, промышленной микробиологии, прикладной биохимии, медицинской микробиологии и биохимии, а также разделы, связанные с конструированием заводского оборудования и созданием специализированных поточных линий.

В современных условиях нередко наблюдается тесное переплетение биотехнологии и биоорганической химии. Так, при получении многих лекарственных веществ используются перемежающиеся этапы био- и органического синтеза с последующей трансформацией целевых продуктов, осуществляемой биологическим или химическим методом. При обсуждении перспектив биотехнологии и ее стратегических целей все чаще подчеркивается ее связь с молекулярной биологией и молекулярной генетикой. Широкое распространение получило понятие молекулярной биотехнологии как научной дисциплины, уже в основном сформировавшейся на стыке технологии рекомбинантной ДНК (генетическая или генная инженерия) и традиционных биологических дисциплин, в первую очередь микробиологии, что объясняется техническими причинами более легкого оперирования микробными клетками. Ведется конструирование новых продуцентов биологически активных веществ с помощью технологии рекомбинантной ДНК. В настоящее время бурно развивается и такая область молекулярной генетики как геномика, основная цель которой — полное познание генома, т.е. совокупности всех генов любой клетки, включая клетки человека. Путем секвенирования — установления полной последовательности нуклеотидов в каждом без исключения гене создается своеобразное «досье», отражающее не только видовые, но и индивидуальные особенности организма.

В проблемных научных статьях можно встретить рассчитанные на эффект и свободные от каких-либо догм высказывания о биотехнологии некоторых крупных экспериментаторов, носящие своего рода мировоззренческий характер, например: «Биотехнология — это приближение к Богу». Здесь подразумевается, что такая кардинальная цель молекулярной биологии и молекулярной генетики как познание генома человека — это заигрывание с Богом, а последующее оперирование геномом, его совершенствование (область биотехнологии) — попытка человека приблизиться по могуществу к Богу.

2. Этапы развития биотехнологии

В развитии биотехнологии выделяют следующие периоды:

Последний специально отделяется от предыдущего, так как биотехнологи уже могут создавать и использовать в производстве неприродные организмы, полученные генно-инженерными методами.

1) Эмпирическая биотехнология неотделима от цивилизации, преимущественно как сфера производства (с древнейших времен — приготовление теста, получение молочнокислых продуктов, сыро-, виноделие, пивоварение, ферментация табака и чая, выделка кож и обработка растительных волокон). В течение тысячелетий человек применял в своих целях ферментативные процессы, не имея понятия ни о ферментах, ни о клетках с их видовой специфичностью и, тем более, генетическим аппаратом. Причем прогресс точных наук долгое время не влиял на технологические приемы, используемые в эмпирической биотехнологии.

2) Быстрое развитие биотехнологии как научной дисциплины с середины XIX в. было инициировано работами Л. Пастера (1822 — 1895).

Именно Л.Пастер ввел понятие биообъекта, не прибегая, впрочем, к такому термину, доказал «живую природу» брожений: каждое осуществлявшееся в производственных условиях брожение (спиртовое, уксусно-, молочнокислое и т.д.) вызывается своим микроорганизмом, а срыв производственного процесса обусловлен несоблюдением чистоты культуры микроорганизма, являющегося в данном случае биообъектом.

Практическое значение этих исследований Л. Пастера сводится к требованию поддержания чистоты культуры, т.е. к проведению производственного процесса с индивидуальным, имеющим точные характеристики биообъектом.

Позднее, приступив к работам в области медицины, Л. Пастер исходил из своей концепции о причине заразных болезней, сводя ее в каждом случае к конкретному, определенному микроорганизму. Хотя техника того времени не позволяла увидеть возбудителя инфекции, как, например, в случае вируса бешенства, однако Л.Пастер считал, что «мы его не видим, но мы им управляем». Целенаправленное воздействие на возбудителя инфекции (в целях ослабления его патогенности) позволяет получать вакцины.

Ослабленный патоген и животное, в организм которого он введен, могут рассматриваться как своеобразный биообъект, а получаемая вакцина — как биотехнологический препарат. Л. Пастер создал строго научные основы получения вакцин, тогда как замечательные достижения Э.Дженнера в борьбе с оспой были результатом освоения эмпирического опыта индийской медицины.

3) Современная биотехнология, основанная на достижениях молекулярной биологии, молекулярной генетики и биоорганической химии (на практическом воплощении этих достижений), выросла из биотехнологии Л.Пастера и, являясь также строго научной, отличается от последней прежде всего тем, что способна создавать и использовать в производстве неприродные биообъекты, что отражается как на производственном процессе в целом, так и на свойствах новых биотехнологических продуктов.

Говоря о биотехнологии, нельзя не упомянуть публикацию в 953 г. первого сообщения о двуспиральной структуре ДНК, ставшего основополагающим для возникновения указанных фундаментальных дисциплин, достижения которых реализуются в современной биотехнологии.

В результате серий публикаций в 1960-х гг. в литературу были внедрены принципиально важные для биотехнолога понятия «оперон» и «структурный ген».

В 1973 г. было опубликовано сообщение об успешном переносе генов из одного организма в другой — в сущности, уже о технологии рекомбинантной ДНК, определяющей возникновение генетической инженерии.

В 1980 г. Верховный суд США признал, что генно-инженерные микроорганизмы могут быть запатентованы, а развитие биотехнологических методов получило юридический статус.

В 1990 г. произошли два принципиально важных события: была разрешена генотерапия (но только применительно к соматическим клеткам человека, т.е. без передачи чужого гена потомству) и утвержден международный проект «Геном человека». Образно говоря, человеку было юридически разрешено познавать свою сущность.

В настоящее время интенсивно растет количество таких успешно применяемых в медицине биотехнологических продуктов, как рекомбинантные белки, вторичные метаболиты микроорганизмов и растений, а также полусинтетических лекарственных агентов, являющихся продуктами одновременно био- и оргсинтеза.

В последние годы родилась новая отрасль генетики — геномика, изучающая не отдельные гены, а целые геномы. Достижения молекулярной биологии и генной инженерии дали человеку возможность читать генетические тексты вначале вирусов, бактерий, дрожжевых грибков, многоклеточных животных. Например, знание геномной структуры патогенных бактерий очень важно при создании рационально сконструированных вакцин, для диагностики и других медицинских целей.

Апрель 2003 года ознаменовался сенсацией в биологии и медицине: Международный консорциум по составлению генетической карты человека (Центр геномного секвенирования: Вашингтонский университет и Сенгеровский центр в Кембридже) опубликовал заявление, что удалось полностью расшифровать геном человека. Титанический труд сотен исследователей из США, Великобритании, Германии, Франции, Японии и Китая занял более 10 лет и обошелся почти в 3 млрд долларов. При этом были разработаны высокоэффективные технологии и инструменты картирования, такие как коллекции клеток, в которых есть небольшие фрагменты каждой из хромосом или искусственные дрожжевые хромосомы, содержащие крупные фрагменты хромосом человека, бактериальные и фаговые векторы, позволяющие размножить (клонировать) фрагменты ДНК человека. Быстро прогрессировала техника секвенирования (например, многоканальный капиллярный электрофорез ускорил и удешевил расшифровку первичной структуры ДНК). Созданы компьютерные программы, позволяющие находить гены в расшифрованных участках ДНК.

Читайте также:  Скин кап для головы

3. История развития биотехнологии (даты, события)

1917 — введен термин биотехнология;

— произведен в промышленном масштабе пенициллин;

— показано, что генетический материал представляет собой ДНК;

1953 — установлена структура инсулина, расшифрована структура ДНК;

1961 — учрежден журнал «Biotechnology and Bioengineering»;

1961-1966 — расшифрован генетический код, оказавшийся универсальным для всех организмов;

1953 — 1976 — расшифрована структура ДНК, ее функции в сохранении и передаче организмом наследственной информации, способность ДНК организовываться в гены;

1963 — осуществлён синтез биополимеров по установленной структуре;

1970 — выделена первая рестрикционная эндонуклеаза;

— осуществлён синтез ДНК;

1972 — синтезирован полноразмерный ген транспортной РНК;

1975 — получены моноклональные антитела;

1976 — разработаны методы определения нуклеотидной последовательности ДНК;

1978 — фирма «Genentech» выпустила человеческий инсулин, полученный с помощью Е. соli;

— синтезированы фрагменты нуклеиновых кислот;

— разрешена к применению в Европе первая вакцина для животных, полученная по технологии рекомбинантных ДНК;

1983 — гибридные Ti — плазмиды применены для трансформации растений;

1990 — официально начаты работы над проектом «геном человека»;

1994 — 1995 — опубликованы подробные генетические и физические карты хромосом человека;

1996 — ежегодный объем продаж первого рекомбинантного белка (эритропоэтина) превысил 1 млрд долларов;

1997 — клонировано млекопитающее из дифференцированной соматической клетки;

2003 — расшифрован геном (набор генов, присущий организму) человека, содержащий приблизительно 30 тысяч генов и три миллиарда «букв» молекул ДНК.

В настоящее время биотехнология решает проблемы не только медицины или создания пищевых продуктов путем ферментации (традиционной области ее применения); с ее помощью ведется, например, разработка полезных ископаемых, решается проблема энергоресурсов, ведется борьба с нарушениями экологического равновесия и т.д. В некоторых странах (например, Японии) биотехнология объявлена «стратегической индустрией», а в других (например, Израиле) включена в число научных направлений с указанием «национальный приоритет». В США число биотехнологических фирм за 1985 — 2005 гг. достигло полутора тысяч. В Европе их несколько сотен.

Характерен рост числа специализированных периодических изданий по биотехнологии, выпускаемых в разных странах, международных и региональных биотехнологических конгрессов и конференций.

Албертс Б., Брэй Д., Льюис Дж. и др. Молекулярная биология клетки. М.: Мир, 1994 г., 444 с.

Бейли Дж., Оллис Д. Основы биохимической инженерии. В 2-х томах. М.: Мир, 1989 г.

Биотехнология: Учебное пособие для ВУЗов /Под ред. Н.С. Егорова, В.Д. Самуилова.- М.: Высшая школа, 1987.

Грачева И.М., Кривова А.Ю. Технология ферментных препаратов. М.: Элевар, 2000 г., 512 с.

Манаков М.Н., Победимский Д.Г. Теоретические основы технологии микробиологических производств. М.: Агропромиздат, 1990 г., 272 с.

Матвеев В.Е. Научные основы микробиологической технологии. М.: Агропромиздат, 1985 г., 224 с.

Основы фармацевтической биотехнологии: Учебное пособие / Т.П. Прищеп, В.С. Чучалин, К.Л. Зайков, Л.К. Михалева. – Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.

Сазыкин О.Ю. Биотехнология: учеб. пособие для студентов высш. учеб. заведений / Ю.О. Сазыкин, С.Н. Орехов, И.И. Чакалева; под ред. А.В. Катлинского. – 3-е изд., стер. – М. : Издательский центр «Академия», 2008.

Щелкунов С.А. Генетическая инженерия. Ч.1. Новосибирск: НГУ, 1994 г.

Биотехнология сегодня развивается бурными темпами. Как наука, она изучает внедрение производственных процессов, в основе которых лежит практическое использование микроорганизмов, всевозможных биологических систем. Это не только растительные или животные ткани, но и протопласты, рекомбинантные ДНК, а также полностью генетически модифицированные организмы.

История развития биотехнологии

Глубоко в древности биотехнология развивалась эмпирическим путем: выпечка хлеба, изготовление вина, сыроварение, силосование кормов для скота – все это различные микробиологические процессы, за которыми веками велись многовековые наблюдения.

Настоящая же генная инженерия, биотехнология, как современный вид науки, начала развиваться только лишь в середине прошлого столетия.

Основные этапы и периоды развития биотехнологии

История развития биотехнологии условно делится на три последовательных этапа. Первый – это развитие биотехнологии в разрезе исторического аспекта.

При раскопках древних поселений в Месопотамии, в Египте, а также Греции были обнаружены остатки больших и малых пекарен и пивоварен.

Известно, что уже шумеры умели делать пиво, причем ассортимент его был довольно широк (около двадцати различных сортов). На территории Древней Греции и Римской империи было активно развито виноделие и производство сыра.

Изготовляли и льняное волокно, этот процесс происходит с участием микроскопических грибов и бактерий.

В конце девятнадцатого века развитие биотехнологии вступило во второй этап, она начала развиваться, как наука. Появились первые ученые генетики, микробиологи и вирусологи.

В начале прошлого века были созданы первичные установки по производству метана. Отходы сельскохозяйственного производства превращались в биологический газ и органическое удобрение.

В середине двадцатого века начали производить антибиотики, как следствие, появились предприятия, которые с помощью микроорганизмов не только аминокислоты и витамины, но и органические кислоты, а также ферменты.

В конце двадцатого века развилась генная и клеточная инженерия, что ознаменовало третий этап развития биотехнологии. Фактическим «днем рождения» этого вида современной науки считают 1972-ой год, время создания первой гибридной ДНК, в которую встроили чужеродные гены.

Итак, биотехнология, как постоянно и динамично развивающаяся наука, охватывает несколько больших периодов. Первый их них – конец 19-го и начало двадцатого века. Это было время первых великих свершений, таких, как открытие структуры белков или применение вирусов при изучении генетики клеточных организмов.

Во втором периоде биотехнология сформировалась, как научно-техническая отрасль, уже производящая препараты. Наконец, в третьем периоде начала развиваться генная и клеточная инженерия.

Основные направления развития биотехнологии

Основа биотехнологии – это генетическая (клеточная) инженерия и биохимия. Развитие клеточной инженерии считается на данный момент одним из самых перспективных направлений.

Ученые проводят культивирование клеток микроорганизмов, растений и животных, осуществляются такие манипуляции, как слияние клеток либо пересадка органоидов.

Основными направлениями развития биотехнологии считаются:

  • создание новых видов продуктов питания и животных кормов, производство их;
  • выведение новых штаммов полезных микроорганизмов;
  • создание новых пород животных;
  • выведение новых сортов растений;
  • создание и применение препаратов по защите растений от болезней и вредителей;
  • применение новых биотехнологических методов по защите окружающей среды.

Кроме этого, активно развивается направление биологически активных соединений с помощью микроорганизмов и культивируемых эукариотических клеток. Сюда входят ферменты, витамины, а также гормоны и антибиотики.

Значение биохимии для биотехнологии

Биотехнология как наука на современном этапе является синтезом разделов биохимии в соединении с генной инженерией. Например, на данный момент ведутся активные исследования в области экологической биотехнологии, но самая большая роль биохимии в развитии биотехнологий – создание новых методов производства продуктов питания.

Дело в том, что почти любая технология по производству пищевых продуктов основана на биохимических процессах.

Поэтому изучение процесса обмена веществ в живой клетке – актуальный вопрос для развития биотехнологии. Это имеет большое значение не только для животноводства и растениеводства или переработки промышленным способом сельскохозяйственного сырья, но и для медицины, а также экологии.

Состояние и перспективы развития биотехнологии в современном мире

Современная биотехнология привлекает внимание инвесторов не только в нашей стране, но и во всем мире. Эксперты и аналитики прогнозируют, что биотехнологии станут самым динамично развивающимся и самым прибыльным бизнесом нынешнего, XXI века.

Быстрыми темпами развиваются такие отрасли, как современные биологические методы защиты культурных растений, биоэнергетика и биодеградируемые полимеры, а также природоохранные биотехнологии. Ведутся научные работы по созданию новых биополимеров, в будущем они могут заменить ныне популярные ныне пластмассы.

Биополимеры имеют большое преимущество в сравнении с пластмассами, так как они нетоксичны и могут разлагаться после их применения, не загрязняя при этом окружающее пространство.

Конструирование необходимых генов даст возможность управлять жизнедеятельностью не только растений, но и животных, создавать новые организмы с иными свойствами.

Чем объясняется бурное развитие биотехнологии

Современные биотехнологии сыграют большую роль в качественном улучшении жизни человека, развитию экономического роста стран. Посредством биотехнологий получают новые средства для диагностики, вакцины, продукты питания, лекарства.

Биотехнология помогает в увеличении урожайности всех злаковых культур, что более чем актуально, принимая во внимание рост численности населения нашей планеты.

В некоторых странах, где значительные объемы биомассы не используются полностью, биотехнология в обозримом будущем превратит их в ценные продукты или в биологические виды топлива. Биотехнология все больше перестает быть прикладной наукой, она активно входит в обычную жизнь людей, помогая решать насущные проблемы современного человечества.

Читайте также:  Гнойнички на языке у ребенка

Развитие биотехнологий в России

Когда говорят о развитии биотехнологий в России, приходится учитывать длительный период упадка и деградации научных учреждений. Сейчас, после нескольких лет интенсивного роста, российские биотехнологии представлены на мировом рынке в количестве 0,1%, а в 1885 году СССР имел долю 5% на рынке продукции, относимой к биотехнологиям. Это медицинские препараты, ферменты, гормональные препараты, чистые линии микроорганизмов, используемых в научных исследованиях, сельскохозяйственном производстве и очистке окружающей среды от вредных отходов.

Интересна судьба самого громкого и скандального проекта, ставшего достоянием гласности в конце восьмидесятых. Это БВК, белково-витаминные концентраты, получаемые из парафинов нефти при использовании специально выведенных бактериальных культур.

В прессе был поднят шум, тему обсуждали эмоционально, общественность требовала закрытия «вредного проекта». Однако работа была уже сделана – бактерии, питающиеся нефтепродуктами, существовали.

Для них нашлась полезная функция: очистка воды и земли от разлившейся нефти. Сейчас вода в морских и речных портах содержит значительно меньше нефтепродуктов, чем в 70-80 годы, благодаря их биологическому разложению.

При помощи прожорливых бактерий очищают территорию на предприятиях от мазута и других нефтепродуктов. Трудно переоценить пользу от этих микроорганизмов – ведь нефтяная пленка в двадцатом веке грозила погубить моря и океаны!

Производство белковой продукции из нефти не было поставлено на поток, но польза от данной биотехнологии несомненна!

В 2012 году российское правительство значительно увеличило государственное финансирование научных исследований в этой отрасли.

Интересно, что ряд проектов осуществляется на общественные пожертвования. К таким проектам относится исследование микрофлоры кишечника и на основе результатов — научно разработанные рекомендации по питанию, физическим нагрузкам, образу жизни. Эта тема популярна в России и в мире.

Этические аспекты развития биотехнологии

Перспективы развития биотехнологий поражают воображение, а в ряде случаев вызывают страх и у людей. По поводу тех или иных исследований периодически разгораются дискуссии, и противники генной инженерии, клонирования организмов или исследования человеческого генома неоднократно требовали запретить все работы в этом направлении. Примером общественных протестов служит упоминавшаяся технология БВК.

Много страстей кипело вокруг генной инженерии. Люди опасались появления уродливых, непредсказуемых, всемогущих существ, созданных путем комбинации генов от несовместимых в природе видов. Фантастические произведения и фильмы способствовали распространению страхов.

Были и научно обоснованные возражения: генетически модифицированные организмы не изучены, употребление кукурузы и сои с модифицированными генами может вызвать болезни. В результате в Европе и России запрещено выращивание и использование ГМО.

Развитие биотехнологии и генной инженерии в современной науке

Биотехнологии и генная инженерия, более чем все остальные, связана с фундаментальными научными исследованиями. Создание организмов с «заданными параметрами», лечение генетически обусловленных болезней, производство белковой массы вне организма, внедрение в организм «биологических чипов», влияющих на жизнедеятельность – все эти направления нуждаются в дорогостоящих исследованиях, сложном оборудовании и высококвалифицированных специалистов.

На стыке двадцатого и двадцать первого века был задуман и осуществлен грандиозный проект – прочитан геном человека. Это был большой труд, в котором участвовало много лабораторий в разных странах мира. Одним из продуктов этих исследований стало появление технологии идентификации личности по ДНК, получение информации о родстве (установление отцовства). Но от прочтения генома ученые ожидали большего. Информация, зашифрованная в ДНК, огромна и ее изучение, расшифровка еще сложнее, чем процедура исследований.

Вклад биотехнологии в развитие медицины

Одним из «подарков дьявола» считалась возможность определения по ДНК генетически запрограммированных болезней. С одной стороны, это возможность предупредить человека об опасностях, но такая информация сама по себе травматична, и способна провоцировать болезни.

Однако «предопределенность» болезней оказалась отнюдь не абсолютной. У вполне здоровых пожилых людей при исследовании обнаруживаются гены болезней, от которых они должны давно умереть. Хотя наследственность никто не отменял, как и генетическую предрасположенность к тем или иным заболеваниям.

Сейчас идет речь не о том, чтобы просто получать информацию о будущих болезнях, но о том, что есть возможность исправлять дефектные участки ДНК. И это было бы прекрасно – ведь накопление генетических ошибок в человеческом сообществе способствует деградации вида гомо сапиенс.

Проблемы биотехнологии

Сейчас возникают споры о генной медицине, о клонировании организмов, об этических вопросах исследования стволовых клеток. На повестке дня – «биопринтер», при помощи которого признается возможным выращивание органов для трансплантации.

На исследования в этом направлении направляются огромные средства, прежде всего в США. Одновременно возникают опасения: вдруг возникнет тенденция выращивания клонов в качестве «идеальных доноров»?

Впрочем, на пути многих амбициозных и не слишком щепетильных в нравственном отношении проектов возникают препятствия, положенные самой природой.

Фантастические успехи от применения стволовых клеток для лечения и омоложения – и их перерождение в злокачественные опухоли; рождение клонированных животных – и их ранняя смерть, слабое здоровье.

Живая материя по-прежнему непостижима, несмотря на успехи в ее познании, и пределы человеческого вмешательства в ее основы — ограничены.

Развитие биотехнологии до 2020

Перспективы биотехнологии на ближайшее будущее можно разделить на рекламные и научно обоснованные. К широко разрекламированным проектам относятся, например, «таблетки молодости» — их обещают выпустить на рынок как раз к 2020 году. Однако скептики говорят, что таких сенсаций было много, начиная со времен алхимии…

Более реалистично выглядит 3D принтер, наносящий клеточные культуры на матрицу с питательным раствором, и формирующий искусственные органы. Еще один медицинский проект – лечение тяжелых ожогов путем нанесения на пораженный участок стволовых клеток, которые в считанные дни образуют новую кожу.

Генетический ремонт – направление, которое развивается и будет развиваться, и в него инвестируются большие деньги.

Компании, занимающиеся биотехнологиями

Лидерами в области биотехнологий являются фармацевтические фирмы США, Китая, Индии, Европы.

Биотехнологии условно подразделяют на группы:

  • красная биотехнология – связанная с медициной и «лечением» генетического кода, на рынке биотехнологий ей принадлежит доля более 70%;
  • зеленая – генная инженерия, работающая для сельского хозяйства;
  • белая – производство биотооплива;
  • серая – защита экологии, борьба с отходами;
  • синяя – использование биологических ресурсов океана.

Лидеры «красной биотехнологии» — американские фирмы Genentech, Novartis, Merck&Co, Pfizer, Johnson & Johnson, Sanofi.

В области разработки и производства ГМО лидирует транснациональная компания Monsanto Company.

Белая, серая, синяя биотехнологии существенно отстают от лидеров. Их полезная деятельность дает не слишком быстрый экономический эффект, поэтому в списках лидеров они не значатся.

Лекция 1. Введение в биотехнологию.

Биотехнология как наука, предмет, объекты и основные цели. Связь биотехнологии с биологическими, техническими и другими науками.

Название науки «Биотехнология» происходит от греческих слов «bios» — жизнь, «teken» — искусство, «logos» — слово, учение, наука.

Термин «биотехнология» был введен в 1917 г. венгерским инженером Карлом Эреки при описании процесса крупномасштабного выращивания свиней с использованием в качестве корма сахарной свеклы. По определению Эреки биотехнология – это «все виды работ, при которых из сырьевых материалов с помощью живых организмов производятся те или иные продукты».

Этот термин не получил широкого распространения. В 1961 году к нему вновь вернулись после того, как шведский микробиолог Карл Герен Хеден порекомендовал изменить название научного журнала «Journal of Microbiological and Biochemical Engineering and Technology» (Журнал микробиологической и химической инженерии и технологии), который специализировался на публикации работ по прикладной микробиологии и промышленной ферментации, на «Biotechnology and Bioengineering» (Биотехнология и биоинженерия).

Начиная с этого периода, биотехнология оказалась необратимо связанной с исследованиями в области промышленного производства товаров и услуг при участии живых организмов, биологических систем и процессов.

Определение биотехнологии в довольно полном объеме дано Европейской биотехнологической федерацией, основанной в 1978 г.

Согласно нему биотехнология – это наука, которая на основе применения знаний в области микробиологии, биохимии, генетики, генной инженерии, иммунологии, химической технологии, приборо- и машиностроения используют биологические объекты (микроорганизмы, клетки тканей животных и растений) или молекулы (нуклеиновые кислоты, белки, ферменты, углеводы и др.) для промышленного производства полезных для человека и животных веществ и продуктов.

В узком смысле биотехнология – это совокупность методов и приемов разработки и введения в сферу потребления полезных для человека продуктов, включая методы генной, клеточной и экологической инженерии.

Читайте также:  Энтеровирус у годовалого ребенка

Биотехнологические методы используются в различных отраслях промышленности и затрагивают многие сферы человеческой деятельности. Согласно этому в мире принята «цветовая» классификация биотехнологии в зависимости от областей ее применения:

1. «Красная» — обеспечение поддержки здоровья и прогрессивного развития методов лечения человека (вплоть до коррекции его генома), а также производство биофармапрепаратов (протеинов, ферментов, антител).

2. «Зеленая» — разработка и создание генетически модифицированных (ГМ) растений, устойчивых к биотическим и абиотическим стрессам; оптимизация методов ведения сельского и лесного хозяйства:

3. «Белая» — промышленная, объединяющая производство в пищевой, химической (в том числе биотопливо) и нефтеперерабатывающей индустрии;

4. «Серая» — природоохранная деятельность, биоремедиация;

5. «Синяя» — использование морских организмов и сырьевых ресурсов.

Понятие «биотехнология» может быть представлено многими определениями:

— использование биологических объектов, систем или процессов для производства необходимых продуктов или для нужд сервисной индустрии;

— комплексное применение биохимических, микробиологических и инженерных знаний с целью промышленного использования потенциальных возможностей микроорганизмов, культур клеток и отдельных компонентов или систем;

— технологическое использование биологических явлений для воспроизводства и получения (изготовления) различных типов полезных продуктов;

— приложение научных и инженерных принципов для обработки материалов биологическими агентами с целью получения необходимых продуктов или создания сервисных технологий.

Объектами биотехнологии являются вирусы, бактерии, грибы, протозойные организмы, клетки (ткани) растений, животных и человека, вещества биологического происхождения (например, ферменты, простагландины, лектины, нуклеиновые кислоты), молекулы.

Методы, применяемые в биотехнологии, определяются двумя уровнями: клеточным и молекулярным. Тот и другой определяются биообъектами.

На клеточном уровнеимеют дело с

— бактериальными клетками (для получения вакцинныхт препаратов);

— актиномицетов (при получении антибиотиков),

— микромицетов ( при получении лимонной кислоты),

— животных клеток (при изготовлении противовирусных вакцин),

— клеток человека (при изготовлении интерферона) и др.

На молекулярном уровне имеют дело с молекулами, например, с нуклеиновыми кислотами. Однако в конечной стадии молекулярный уровень трансформируется в клеточный.

Клетки микроорганизмов, животных и растений в процессе ассимиляции и диссимиляции образуют новые продукты и выделяют метаболиты разнообразного физико-химического состава и биологического действия.

На каждой стадии «биологического синтеза» клетки можно определить те продукты, которые могут быть использованы в биотехнологии.

Продукты одноклеточных делят на 4 категории:

1. Сами клетки как источник целевого продукта (например, выращенные бактерии или вирусы используют для получения живой или убитой корпускулярной вакцины; дрожжи, как кормовой белок или основу для получения гидролизатов питательных сред и т.д.)

2. Крупные молекулы, которые синтезируются клетками в процессе выращивания: ферменты, токсины, антигены, антитела, пептидогликаны и т.д.

3. Первичные метаболиты – низкомолекулярные вещества (менее 1500 дальтон), необходимы для роста клеток, такие как аминокислоты, витамины, нуклеотиды, органические кислоты.

4. Вторичные метаболиты (идиолиты) – низкомолекулярные соединения, не требующиеся для роста клеток: антибиотики, алкалоиды, токсины, гормоны.

Объекты биотехнологии из микромира варьируют в размерах от нанометров (вирусы, бактериофаги) до миллиметров и сантиметров (гигантские водоросли) и характеризуются относительно быстрым темпом размножения. В современной фармакологии используется очень широкий спектр биообъектов, группировка которых весьма сложна. Она может выполняться на основе принципа их соразмерности.

Последние успехи биологии и генной инженерии привели к появлению совершенно новых биообъектов – трансгенных бактерий (генетически модифицированных), вирусов, грибов, клеток растений, животных, человека и химер.

Биотехнология – междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических знаний и призванная к созданию новых биотехнологических процессов, которые в большинстве случаев будут осуществляться при низких температурах, требовать небольшого количества энергии и будут базироваться преимущественно на дешевых субстратах, используемых в качестве первичного сырья.

Из вышесказанного следует, что биотехнология является межотраслевой дисциплиной. Она основана на многопрофильной стратегии для решения различных проблем.

В биотехнологии применяются методы, заимствованные из химии, микробиологии, биохимии, молекулярной биологии, химической технологии и компьютерной техники с целью создания новых разработок. Главная причина успеха развития биотехнологии – стремительное развитие молекулярной биологии. Например, успехи в разработке технологии рекомбинантных молекул ДНК.

Ни для кого не секрет, что ископаемое топливо в один прекрасный день станут крайне ограниченным. Данное обстоятельство заставляет искать новые, более дешевые и лучше сохраняемые источники энергии и питания, которые могли бы восполняться биотехнологическим путем.

Этапы развития биотехнологии.

Биотехнология не является чем-то новым, ранее не известным. Она представляет собой развитие и расширение набора технологических приемов, корни которых появились тысячи лет тому назад.

Биотехнология включает многие традиционные процессы, давно известные и давно используемые человеком. Это пивоварение, хлебопечение, изготовление вина, производство сыра, приготовление многих восточных пряных соусов, а также различные способы утилизации отходов. Начало этого этапа биотехнологии теряется в глубине веков. Он продолжался примерно до XIX века.

Биотехнология формировалась и эволюционировала по мере формирования и развития человеческого общества. Условно в развитии биотехнологии можно выделить 4 этапа.

1. Эмпирический этап (emperikos – опытный от гр.) или доисторический. Это самый длительный период, который охватывает приблизительно 8000 лет (6000 лет до н.э. и около 2000 лет н.э.)

Известно, что шумеры – первые жители Месопотамии (на территории современного Ирака) – создали первую цветущую цивилизацию. Они выпекали хлеб из кислого теста, владели искусством готовить пиво. Приобретенный опыт передавался из поколения в поколение, распространялся среди соседних народов (ассирийцев, вавилонян, египтян и древних индусов). В течение нескольких тысячелетий известен уксус, который готовился в домашних условиях.

Первая дистилляция в виноделии осуществлена в XII веке, водка из хлебных злаков впервые получена в XVI веке, шампанское известно с XVIII века.

Для эмпирического периода характерно получение кисломолочных продуктов, квашенной капусты, медовых алкогольных напитков, силосование кормов.

В 1796 году Э. Дженнер впервые в истории провел прививку человеку коровьей оспы.

2. Этиологический этап(от греч. aitia – причина) – вторая половина XIX века и первая треть XX века (1856 – 1933 гг). Связан с выдающимися исследованиями великого французского ученого Л. Пастера (1822 – 1895) – основоположника научной микробиологии. Пастер установил микробную природу брожения, доказал возможность жизни в бескислородных условиях, создал научные основы вакцинопрофилактики и др.

В 1859 г. – Л. Пастер приготовил жидкую питательную среду, Р. Кох в 1881 году предложил метод культивирования бактерий на стерильных ломтиках картофеля и на агаризованных питательных средах. Как следствие, удалось доказать индивидуальность микробов и получить их в чистых культурах. Достижения 2-го периода:

— 1856г. — Г. Мендель открыл законы доминирования признаков и ввел понятие единицы наследственности в виде дискретного фактора, который передается от родителей потомкам.

— 1869 г. – Ф. Милер выделил «нуклеин» ДНК из лейкоцитов.

— 1883 г. – И. Мечников разработал теорию клеточного иммунитета.

— 1884 г. – Ф. Леффлер изолировал и культивировал возбудителя дифтерии.

— 1892 г. Д. Ивановский открыл вирусы.

— 1893 г. В. Оствальд установил каталитическую функцию ферментов.

— 1902 г. Г. Хаберланд показал возможность культивирования клеток растений в питательных растворах.

— 1912 г. Ц. Нейберг раскрыл механизм процессов брожения.

— 1913 г. Л. Михаэлис и М. Ментен разработали кинетику ферментативных реакций.

— 1926 г. Х. Морган сформулировал хромосомную теорию наследственности.

— 1928 г. Ф. Гриффит описал явление «трансформации» у бактерий.

— 1932 г. М. Кноль, Э. Руска изобрели электронный микроскоп.

На этом этапе во Франции приступили к созданию биоустановок для микробиологической очистки сточных вод.

3. Биотехнический этап –1933г. – 1972 г. Наиболее важные достижения этого этапа:

— Внедрение в практику биореактора (ферментера, аппарата-культиватора);

— Разработка теории электрофореза;

— Обнаружение вирусов с помощью электронного микроскопа;

— Производство пенициллина в промышленных масштабах;

— Процесс конъюгации у E. Coli;

— Разработка вакцины против желтой лихорадки;

— Описание плазмиды как внехромосомного фактора наследственности;

— Расшифровка структуры ДНК;

— Прочитаны первые три буквы генетического кода аминокислоты фенилаланина; и т.д.

4. Геннотехнический периодначался в 1972 году, когда П. Берг создал первую рекомбинацию молекулы ДНК.

метод получения моноклональных антител;

— метод анализа первичной структуры ДНК путем химической деградации;

— разрешен к применению в США первый диагностический набор моноклональных тел;

— 1982 год – в продажу поступил впервые человеческий инсулин;

— 1986 г. – метод полимеразной цепной реакции;

Ссылка на основную публикацию
Эссхол
..Но не пытайся для себя хранить тебе дарованное. Моим сексуальным воспитанием занималась газета. Приложение к АИФ "Я-молодой". Я выписывал ее...
Эрозивная гастропатия что это такое лечение
Пациенты часто путают гастрит и гастропатию, между тем – это совершенно разные понятия. Если при гастрите определяются явные признаки воспалённого...
Эрозивный бульбит что это такое фото
12-перстная кишка выполняет особую роль при переваривании пищи, в которую поступают ферменты (панкреатический сок, желчь), необходимые для усвоения в стенках...
Этанол рецепт на латинском
Раздражающие средства возбуждают расположенные в коже и слизистых оболочках рецепторы, импульсы с которых поступают в ЦНС. Этим вызывается реакция со...
Adblock detector